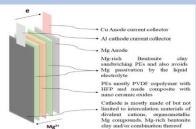
Quasi solid – state Magnesium Ion Batteries (QSSMgBs)

Problem addressed


- Dependency on scarce resources
- Low ion conductivity in solid sate electrolytes.
- High production cost
- Limited recyclability and reusability of existing technologies.
- Capacity loss and reduced performance over the time
- Cycle instability
- Safety concern
- Thermal instability

Inventor(s):

505, Fifth Floor Delta Wing, Raheja Towers, Anna Salai,

Intellectual

Indian Patent

Application

- ✓ e-mobility
- ✓ Electronic applications
- ✓ Stationary storage applications
- Toys
- ✓ Drones

Kaushik Palicha Harinipriya Seshadri

Chennai, Tamil Nadu - 600002

Property:

202241033599 (Under Examination)

PCTIN2023050551

Figures

3.0

Electrochemical process

Schematics of QSSMgBS

- Ionic conductivity of the phyllosilicates.
- Potentiodynamic studies of phyllosilicates GCD Profile

Category of the invention:

- Electrical
- ✓ Clean Energy
- ✓ Battery Technology
- ✓ Next Generation Transportation
- ✓ Green Technology

Technology:

The current technology is a Quassi solid-state Magnesium silicate battery (QSSMgBs) made with locally available phyllosilicate.

The battery comprises of:

- 1. SSE: Quasi state electrolyte Mg-enriched Bentonite Clay deposited on either side of PP membrane
- Cathode: Mg-rich phyllosilicate 2.
- Anode: Mg metal

Advantage

- ✓ Utilization of earth abundant and naturally available material
- ✓ Environmental friendly
- ✓ Avoids formation of complex chloride ions such as [MgCl₄]²⁻ that hinders the solid phase diffusion of Mg²⁺ ions
- ✓ Increased electrode kinetics on the cathodic surface
- ✓ Enhanced gravimetric energy density of the order of three times the value reported so far in the state-of-the-art in the literature
- ✓ Excellent cyclability of about 10,000 cycles
- enhances the specific capacity
 - The bentonite clay acts as a good Mg²⁺ storage material at the electrical double layer.

Potential Value

Next Generation Advanced Battery Market

USP

Dr. Samuel Rout

- ✓ Completely recyclable
- ✓ Low production cost
- ✓ 110 mAh/g upto 10 k cycles @ 1C
- ✓ Gravimetric Energy Density: 0.888 kWh/kg
- ✓ Areal Capacity: 20.48 mAh/cm²
- ✓ Longevity: 30 days @ 0.1 C
- ✓ Ionic conductivity of electrolyte is 2.87 mS/cm
- ✓ Ionic conductivity of Cathode Active material: 2.54 mS/cm

Reach Us: