An Antimicrobial Nanocomposite and a **Green Process to Synthesize the** Nanocomposite

Intellectual Property: 558412

Inventor: K N K Square Private Limited

Category: •Nanotechnology •Biotechnology •Green Chemistry •Medical and Dental Applications •Antimicrobial Materials

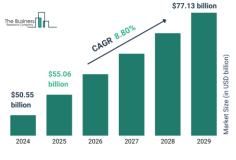
Application:

1. Medical Device Coatings

2. Dental care (eg. integrated into toothpaste, mouthwashes, and dental coatings)

3. Water Purification & Coating as

Antimicrobial Surfaces


4. Drug delivery systems

Technology:

The invention is a green-synthesized antimicrobial nanocomposite of cerium oxide (CeO₂) and graphene oxide (GO), prepared using Calotropis gigantea floral extract or bacterial extract. designed for effective antibacterial and antibiofilm action against Streptococcus mutans.

Market Forecast

Oral Care Global Market Report 2025

Ref: thebusinessresearchcompany.com

Reach Us:

Dr. Amaresh Panda

Lead, Technology Transfer Office, KIIT-TBI amaresh@kiitincubator.in|+91-9819053408

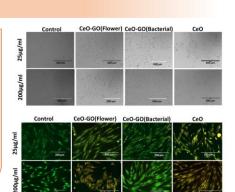


Fig.1: Optical Micrographs Showing Adherence Loss in NH-3T3 Cells Treated with Nanoparticles

Fig 2: Fluorescent images of NH-3T3 cells treated with GO, GO-CeO NP, and CeO NP nanoparticles

Problem Addressed

Rising Antimicrobial Resistance (AMR): Traditional antibiotics are becoming less effective: the nanocomposite provides a non-antibiotic solution via ROS generation.

Toxicity of Conventional Nanomaterials: Existing nanoparticles like AgNO3 have cytotoxic effects: the green synthesis method improves biocompatibility and minimizes toxicity.

Dental and Medical Biofilm Formation: The nanocomposite inhibits S. mutans biofilm formation, reducing bacterial resistance.

High Production Costs: The eco-friendly synthesis process lowers costs by using plant extracts and bacterial media.

Advantage

- 1. Green Synthesis: Environmentally friendly, using plant and bacterial extracts instead of toxic chemicals.
- 2. Higher Biocompatibility: Reduces cytotoxicity and enhances compatibility with human tissues.
- 3. Superior Antimicrobial Effectiveness: Targets S. mutans effectively, making it ideal for dental applications.
- 4. Cost-Effective & Scalable: Lower production costs due to eco-friendly synthesis methods.
- 5. Multi-functional Applications: Can be used in medical, dental, environmental, and industrial fields.

Green Synthesis Process Superior Antimicrobial Action Cost-Effective & Scalable Versatile Applications

Dr.Jyotsnarani Jena

USP:

tto@kiitincubator.in tto.kiitincubator.in

Associate, Technology Transfer Office, KIIT-TBI samuel@kiitincubator.in|+91-7735389456