

Heterocyclic Small Molecule Conjugates And Their Therapeutic Application In Cancer Therapy

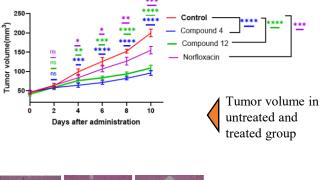
Intellectual Property:

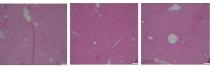
Category of the invention:

Applicant/Innovator: Anti-Cancer Drugs

IP: IN 202531048955

- **Drug Repurposing**


DNA-Targeting Agents


Chittaranjan National Cancer Institute

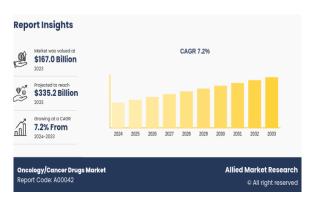
TRL: 5

TECHNOLOGY:

The invention discloses a new class of anticancer hybrid molecules formed by conjugating the widely used antibiotic norfloxacin with DNAbinding heterocyclic scaffolds. These conjugates exhibit potent anticancer activity, enhanced DNAbinding properties, and reduced systemic toxicity, offering a promising platform for targeted cancer therapy, particularly for breast cancer, liver cancer, and lymphoma. Developed through a repurposing-remodeling strategy, this innovation established pharmacophores accelerate drug development with improved safety and efficacy profiles.

Histopathological analysis of liver

PROBLEM ADDRESSED


Current cancer therapies face:

- Poor target specificity
- High systemic toxicity
- Drug resistance (especially MDR via efflux pumps)
- Limited efficacy in advanced/metastatic stages
- High costs of targeted biologics

ADVANTAGE

- Superior cytotoxicity compared to Norfloxacin and
- Low systemic toxicity in mice models (up to 12
- Dual-action mechanism: Topoisomerase inhibition + DNA intercalation
- Efficient synthetic route (3–4 steps, high yield, low cost)Uses readily available starting materials
- Compatibility with click chemistry (modular drug development)

MARKET POTENTIAL

Ref:: alliedmarketresearch.com

USP

- Repurposing-remodelling of Norfloxacin into a potent anticancer scaffold
- First-in-class hybrid conjugates with DNAinteracting pharmacophores
- Effective in in vivo breast cancer models with cell cycle arrest at G0/G1 and apoptosis induction
- Outperforms FDA-approved drugs like Tamoxifen and Sorafenib in key metrics
- Enables personalized therapy via molecular targeting and biomarker-based use

Dr. Amaresh Panda